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Phase behavior of binary hard-sphere mixtures from perturbation theory
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Using a first-order perturbation theory, we have studied the phase diagram of a binary mixture of hard
spheres for different values of the size ratio. Recent models for the two-body depletion potential between large
spheres are used to take into account the role of the small spheres. The theory predicts a complex phase
diagram including a fluid-solid transition at high packing fraction of small spheres, metastability of fluid-fluid
demixing, an isostructural solid-solid transition at high packing fraction of the large spheres for sufficiently
small values of the size ratioq of the spheres, and the tendency to sticky-sphere behavior in the limitq→0.
The agreement with recent simulation results is quite good. We also show that this phenomenology was
already implicit in the pioneering work of Asakura and Oosawa.@S1063-651X~99!10009-6#

PACS number~s!: 82.70.Dd, 61.20.Gy, 64.70.2p
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I. INTRODUCTION

An extensive research effort has been devoted in re
years to the study of phase transitions and the topology of
phase diagram of model colloidal systems@1#. These are rel-
evant issues not only because of their important technol
cal implications, but also from a fundamental point of vie
For example, mixtures of colloidal particles consisting
hard spheres~HS! with a small amount of nonadsorbin
polymer have been shown experimentally to present a
variety of phase behaviors@2#. Simulation@3# and theoretical
@4,5# studies have shown that these behaviors can be q
tatively well understood by considering the mixture as
effective system formed by HS colloidal particles with
attractive interaction tail due to a depletion mechanism.

Mixtures of colloidal particles and polymers are not t
only possibility and very recently the study of the pha
diagram of an even simpler model of colloidal mixtur
namely a mixture of large and small hard spheres, has ga
renewed interest. So far the main unsolved issue and top
debate has been the existence of a fluid-fluid demixing tr
sition which, in case it exists, will be an entropically drive
transition that, in principle, could be described theoretica
as a liquid-gas transition occurring in the system of la
spheres and induced by the attractive depletion interac
due to the small spheres. However, very recent simula
results @6,7# have shown that the phenomenology is mo
complex and that, consistent with experimental results@8#,
demixing is strongly associated with the freezing transitio

Different theoretical studies have been reported@9–11#,
aimed at elucidating the existence and nature of the demi
transition. The conclusion that can be extracted from th
studies is that theoretical predictions for the phase beha
depend on fine details of the approximations and are, th
fore, inconclusive.

In this paper we obtain theoretically the phase diagram
an effective system of hard spheres interacting via a var
of depletion interactions based on different approximatio
published recently in the literature. For this purpose we us
consistentperturbation theory, applicable to both fluidand
solid phases: as it turns out, it is crucial to use an accu
PRE 601063-651X/99/60~3!/3158~7!/$15.00
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perturbation theory for the solid phase in order to obtain
accurate description of phase equilibria. In line with rece
simulation work, our results indicate the existence of a flu
fluid transition, but this transition is metastable with resp
to a direct fluid-solid transition. In addition, solid-solid de
mixing is observed for low values of the size ratioq. Finally,
we show how the topology of the phase diagram of the m
ture evolves with respect toq down to the limitq→0, which
corresponds to the sticky-sphere limit. One important c
clusion of this paper is that, despite the high degree of
phistication of all the recently obtained depletion potentia
the basic physics of this system was already implicit in
early Asakura and Oosawa potential@12#, which possesses
phase diagram that essentially does not differ from th
obtained using the more elaborate potentials.

II. DEPLETION MODELS

A number of authors@6,13# have recently studied the
phase behavior of a mixture of hard spheres with respec
the size ratioq[ss /s l , wheress ands l are the diameters
of the small and large spheres, respectively. Phase equil
were obtained by performing Monte Carlo~MC! simulations
on an effective system made up of large spheres which
teract via a hard core of diameters l plus an attractive tail.
The origin of this attraction is a depletion mechanism@14#:
the small spheres have more free volume available~and the
system as a whole increases its entropy! when the large
spheres approach each other in such a way that there i
room left for small spheres in the space between the la
ones.

This depletion mechanism gives an effective poten
whose range is controlled by the size of the smaller partic
and, therefore, suggests the possibility of having real syst
which behave as simple systems with a tunable range of
interaction potential, an interesting avenue for fundamen
research. Recently, several depletion-potential approxi
tions have been proposed in order to improve on pionee
work by Asakura and Oosawa@12#, who, using excluded-
volume arguments, derived the potential
3158 © 1999 The American Physical Society
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bfdep
AO~r !52

11q

2q
3l2hsF11~11l/3!q

11q G , 21,l,0,

~1!

where l5r /q21/q21, hs is the small-sphere packin
fraction,b51/kT, andr is in units ofs l . On the other hand
use of the classical Derjaguin or flat-interface approximat
@14# leads to

bfdep
D ~r !52

11q

2q
pF1

2
P~hs!l

212G~hs!lG ,
21,l,0, ~2!

whereP(hs)5bp(hs)ss
3 is the ~reduced! hard-sphere pres

sure and2G(hs)5bg(hs)ss
2/2 is the~reduced! surface ten-

sion of a fluid of hard spheres close to a planar hard w
Mao et al. @15# derive a virial expansion of the potentia
within the Derjaguin approximation, which is exact up
third order inhs . A simplified version, obtained by Go¨tzel-
mann et al. @16# using the Carnahan-Starling pressure a
the expression for the surface tension from scaled par
theory @17#, is

bfdep
G ~r !52

11q

2q
@3l2hs1~9l112l2!hs

21~36l

130l2!hs
3#, 21,l,0. ~3!

This expression is exact to second order inhs and does not
differ significantly from Maoet al.’s expression. Note tha
the ~exact! first-order term inhs is different from that of
Asakura and Oosawa; this difference is numerically qu
small and we have chosen to use the modified version~1!
since it has been used previously in the work of Gastet al.
@9#, which we discuss later. In@16#, a so-calledwedgeap-
proximation is considered whereby the free volume availa
to a small sphere in the presence of two large sphere
is
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computed in a more sophisticated way than in the class
Derjaguin approximation. The explicit expression for th
potential is

bfdep
W ~r !52

11q

2q
pF1

2
P~hs!l

2

12G~hs!l
11q~11l/2!

11q G , 21,l,0.

~4!

Almarza and Enciso@13# consider an approach similar to th
of @16# leading to Eq.~3! but use different approximations
writing

bfdep
AE~r !5 f 1~r ,q!hs1 f 2~r ,q!hs

2 , ~5!

where

FIG. 1. Behavior of the different depletion potentialsfdep(r )
with distancer, for q50.2 andhs50.3. The potentials are ex
pressed in thermal energy unitskT ~with b51/kT). Labels are as
follows: D, full Derjaguin approximation;W, wedge approximation;
G, third-order approximation of Go¨tzelmannet al.; AE, potential
derived by Almarza and Enciso; AO, potential of Asakura a
Oosawa.
f 2~r ,q!5H 8 f 1~r ,q!1
2

q3
@~11q! f 0~q!2r #2@2~11q! f 0~q!1r #, 1,r ,~11q! f 0~q!

0, r .~11q! f 0~q!,

~6!
a
ese
he
ow
ing
. In

ribe
d

is-

d,
f 1~r ,q!52
1

2q3 H ~11q2r !2@2~11q!1r #, 1,r ,11q

0, r .11q,
~7!

and

f 0~r ,q!5F11
9

8 S q

11qD2
1

4 S q

11qD 3G1/3

. ~8!

The behavior of the different depletion potentials with d
tancer, for q50.2 andhs50.3, is displayed in Fig. 1. In-
cluded in the figure are potentials derived from the full D
jaguin ~D! and wedge approximations (W), the third-order
-

-

Götzelmannet al.potential (G), the potential derived by Al-
marza and Enciso~AE!, and that of Asakura and Oosaw
~AO!. These potentials are not intended to be valid for th
values ofq and hs as far as an accurate description of t
real hard-sphere mixture is concerned; however, they sh
most clearly the difference between the potentials, this be
the only reason why we choose these particular values
fact, for the range of values ofq and hs (q,0.2 andhs
,0.2), where these potentials should be expected to desc
the mixture accurately, they do not differ significantly an
give quantitatively similar phase diagrams, as will be d
cussed later.

Let us review the MC results obtained using the Go¨tzel-
mann et al. potential. In @6#, two cases were considere
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namelyq50.1 and 0.05, and it was found that there exist
fluid-fluid demixing transition, but that it ismetastablewith
respect to a direct fluid-solid transition. This is in qualitati
agreement with possible interpretations of experimental
sults @8# and with previous theoretical studies@18# and it
would seem to put an end to the discussion concerning
fluid-fluid demixing transition. In addition, an isostructur
solid-solid transition was found which, forq50.1, is also
metastable with respect to the melting transition but beco
stable forq<0.05. This is a very interesting result because
suggests a simpler experimental way for observing the so
solid transition than in the case of mixtures of colloidal p
ticles and polymers since it should be easier to reduce
value of q. From the theoretical point of view this resu
demands that any approximation be able to take into acc
the solid phase in an accurate~and consistent with the ap
proach for the liquid phase! way along the entire solid den
sity range, i.e., from the melting density up to the clos
packing limit.

Despite those findings, some caution should be taken
cause it might be argued that the depletion potential appr
mation is very crude. In principle, many-body contributio
to the depletion potential are expected to be important,
these contributions should play a crucial role in the clus
ing mechanism behind a demixing transition. Direct simu
tions of the HS mixture are difficult due to equilibratio
problems, especially when the sizes of the spheres are
dissimilar (q!1), because then there appear two very diff
ent relaxation times in the system. Therefore, only sca
direct simulation data are available that can be used a
justification for the depletion potential approximation. Buh
and Krauth@19# have recently used a so-called cluster alg
rithm to simulate a binary mixture of HS. They have cons
ered only one thermodynamic state (h l5hs50.1215, where
h l is the large-sphere packing fraction! and three size ratios
(q50.1, 0.05, and 0.033) finding evidence for demixing
the two latter cases. However, the clustering observed in
study is most likely associated with freezing rather th
fluid-fluid demixing given the thermodynamic state cons
ered by Buhot and Krauth.

More recently, Dijkstraet al. @7# have been able to per
form such a direct simulation in the region of a moderat
low small-sphere packing fraction, where the richest par
the phase diagram takes place. They have found quite a g
agreement with the results from the MC simulations ba
upon the description of the mixture in terms of the deplet
potential~3!. This is the case even for a value ofq as large as
0.2, for which a description in terms of the depletion pote
tial could be expected to fail.

Finally, Almarza and Enciso@13# have also used MC
techniques to obtain the phase diagram of a system
spheres interacting via the depletion potential derived
them. Their phase diagrams are quite similar; interestin
they do not find any fluid-fluid equilibria for the cases stu
ied.

III. THEORY AND RESULTS

Our theoretical approximation is a first-order perturbat
theory for the Helmholtz free energyF(r), which can be
applied to both the fluid and the solid phases. The expres
a
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for F(r), exact up to first order, is@20#

F~r!5FHS~r!12pr2E
s l

`

drr 2g̃HS~r !fdep~r !, ~9!

wherer is the mean density,FHS is the free energy of the HS
reference system, andg̃HS is an angle average of the two
body distribution function of the reference systemr (2)(r ,r 8).
In the solid phase,g̃HS can be very accurately obtained, pr
vided that the thermodynamics and the local densityr(r ) of
the solid reference system are known@21#, while in the liquid
phase it reduces consistently to the radial distribution fu
tion @21#: Equation ~9! reduces to the usual perturbatio
scheme for uniform liquids@21#. For this latter case we hav
used the Carnahan-Starling prescription for the free ene
of the HS fluid and the Verlet-Weiss approximation for
radial distribution function.

The thermodynamic properties, free energy, and lo
densityr(r ) of the face-centered-cubic~fcc! phase of HS can
be accurately obtained from any of the density function
available@22# or may be calculated using a recently propos
extension of the well-known free-volume approximatio
which is capable of giving not only the equation of state
ordered phases of HS, but also their microscopic structure
a very accurate way@23#. The results presented here we
obtained using the second route but are practically indis
guishable from those obtained using, e.g., the Tarazona f
tional @24#.

It is worth mentioning that it is crucial to implement a
accurate scheme for the angle-averagedg̃HS(r ) of the solid
phase; in this respect the scheme proposed in@21# and used
in the present paper can be used with advantage over mo
the theories used by other workers, which give very po
results for extremely short-ranged potentials. Our theoret
scheme is quite similar to, but, we believe, more consist
than, that used by Gastet al. @9#, in their work on polymer-
induced phase separation, where solid correlations obta
from simulations on the HS system are included in the p
turbation theory. In addition, some of the higher-order ter
in the perturbative expansion used by these authors are
cluded in a manner proposed by Stell and co-workers@25#
for the solid phase. We will comment on these results la

Figure 2 shows our theoretical results for the phase d
gram using the Go¨tzelmannet al. potential. The figure in-
cludes calculations for different size ratios,q
50.2, 0.1, 0.05, 0.0001, and 0.000 01. Also included
simulation results of Dijkstraet al. using both the depletion
potential approximation and the results from their dire
simulations of the binary mixture at moderately low sma
sphere packing fractions. The overall agreement betw
theoretical and computer simulation results is quite go
Our perturbation theory reproduces satisfactorily the cha
of topology that occurs in the phase diagram when the s
ratio q is progressively reduced. Also, the theory is quanti
tively correct as regards the solid-solid transition, present
q<0.1, and becomes more accurate in the case of the fl
solid transition asq is reduced. The theory is also able to fin
a fluid-fluid demixing transition~metastable with respect t
the fluid-solid transition!, though shifted to high densities
This is an interesting result which contrasts with recent
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tempts to find the fluid-fluid demixing by perturbation theo
@6,16#. The main difference between our theory and that
Ref. @16# is the approximation used for the radial distributio
function ~rdf!. While in Ref.@16# the authors consider a con
stant rdf~taken to be the contact value of the Percus-Yev
approximation! within the range of the depletion potentia
we use the full Verlet-Weiss@26# approximation, which is
known to predict the correct contact value. Since the de

FIG. 2. Theoretically predicted phase diagram for binary
mixtures, using the Go¨tzelmannet al. depletion potential. Size ra
tios are, from top to bottom,q50.2, 0.1, 0.05, and 0.0001~in the
last graph the caseq50.000 01 is also included!. F andSdenote the
stable fluid and solid~fcc! phases.F1S, F1F, andS1S denote,
respectively, the stable fluid-solid, the metastable fluid-fluid, a
~meta!stable solid-solid coexistence regions. Solid lines are res
from the present theory. Dashed lines are results from MC sim
tions of the effective depletion model. Symbols are results from
direct MC simulation of the mixture: the squares and the aster
denote, respectively, the fluid-solid and the solid-solid transition
n

k

e-

tion potential presents a deep well near contact and a slig
positive region, this difference turns out to be crucial. Ho
ever, some caution is needed because the Verlet-Weiss
proximation for the rdf breaks down in the high-density r
gime, close to where the theory finds the demixing transiti

We now present our theoretical results for the phase
gram corresponding to the Almarza-Enciso depletion pot
tial @13#, which are contained in Fig. 3. MC data obtained
@13# have been included in the figure. In the two cases st
ied, q50.05 and 0.1, the agreement of the theoretical res
with simulation is similar to that found for the Go¨tzelmann
et al. potential. Note that all features of the phase diagra
predicted from the theory are completely similar, as expec
from the similarity between the potentials for low values oq
andhs . For the same reason, one should expect the Asak
Oosawa potential to lead to a quantitatively similar pha
diagram. However, Gastet al. @9#, using the Asakura-
Oosawa depletion potential~1!, found a phase diagram con
taining a fluid-solid transition, in line with previous finding
but the solid-solid transition was missing altogether. In ord
to understand this discrepancy, we have used our theore
scheme to obtain the phase behavior of this potential. In
4~a! we show that, for the lowest value ofq used by Gast
et al., the solid-solid transition is still metastable with respe
to the fluid-solid transition. For a lower value (q50.05) the
solid-solid transition appears as a stable transition@Fig.
4~b!#. Note that these results compare equally favorably w
the simulation results of the real mixture as the other, m
elaborate potentials. This basically indicates that all
physics is already contained in the linear term of the dep
tion potential.

The depletion potentials used are valid for smallhs ,
which are actually accurate for mixtures of spheres with v
different sizes, but break down for largeq. It is interesting to
note that the full depletion potentials Eqs.~2! and ~4! give

d
ts
a-
e
s

FIG. 3. Same as Fig. 2 but for the Almarza and Enciso poten
Size ratios areq50.1 ~top! andq50.05 ~bottom!.
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rise to phase diagrams in complete agreement with thos
Figs. 2–4 except forq>0.2, where phase equilibria becom
totally unreasonable. This is apparent in Fig. 5, which sho
an unphysical phase behavior, not observed in the sim
tions of the real mixture. This means that in the region wh
the smallhs expansion is no longer valid, the full depletio
potential also ceases to make sense, and that departures
the simulation results for the real mixture are to be associa
with an invalid potential rather than with a breakdown
perturbation theory, which for this range of parameters
still in reasonable agreement with simulation results.

However, a more fundamental analysis is necessary
understand the reason why the quantitative results for
fluid-fluid demixing transition are not satisfactory while o
theory is able to predict very accurately the behavior of
solid phase, including the melting and solid-solid transitio
In fact, an important tendency to clustering is expected in

FIG. 4. Same as Fig. 2 but for the Asakura and Oosawa po
tial. Size ratios areq50.1 ~top! andq50.05 ~bottom!.

FIG. 5. Theoretically predicted phase diagram for binary
mixtures, using the full Derjaguin~D! and wedge~W! approxima-
tions for the depletion potential. The size ratio isq50.2. Squares
indicate MC results for phase boundaries corresponding to the
HS mixture.
of

s
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e

rom
d

s

to
e

e
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e

low-density liquid phase at highhs , which is induced by the
depletion potential. For the values ofq considered in this
study, this potential presents a narrow and deep attrac
well. In terms of an effective rdf of the liquid, this shoul
cause the presence of a first peak significantly higher t
that predicted by the Verlet-Weiss approximation. Within
first-order perturbation scheme, the consequence is a la
contribution from the attractive interaction in the low-dens
regime and, therefore, the appearance of a van der W
loop in the free-energy branch at lower densities, which,
the end, causes a displacement of the fluid-fluid demix
transition in the same direction.

In the solid phase, however, the situation is different b
cause the HS core of the intermolecular potential can st
lize a solid structure where the nearest-neighbor distanc
large enough to prevent particles from feeling the attract
well due to their neighbors. Clustering in the solid pha
pays a large entropy price due to the hard-core interac
and is expected to be less important than in the liquid pha
When h l increases, the nearest-neighbor distance decre
and the large spheres feel the attractive depletion pote
more strongly, so that there is an increasingly negative c
tribution to the free energy. In contrast, near close pack
the repulsive hard-core contribution dominates the free
ergy. The final balance makes an elbow~or van der Waals
loop! to develop in the solid free-energy branch if the dep
tion potential is strong enough, i.e., at sufficiently highhs
values, which originates the solid-solid transition.

Figure 6 shows this elbow forq50.1 in comparison with
simulation results. This demonstrates that perturbation the
is well justified in the case of the solid phase because
reference system is, to a large extent, determining the st
ture of the system. This fact, together with a very accur
approximation for the averaged two-body distribution fun
tion like the one we are using, explains the good agreem
of our results with simulations as far as the solid phase
its transitions are concerned. Note that in the region of la
hs , the solid phase coexists with a liquid of very low dens
for which clustering effects, not considered explicitly in th
theory, are expected to be important, as mentioned bef

n-

al

FIG. 6. Free energybF/V vs h l for q50.1 at hs50.09 and
hs50.13~top and bottom curves and symbols, respectively! for the
third-order approximation for the depletion potential of Go¨tzelmann
et al. The volumeV is expressed in units ofs l

3 andb51/kT. The
curves and symbols for largeh l are obtained for the solid while
those for lowh l correspond to the fluid. Solid lines are results fro
the present theory. Symbols are results from MC simulatio
Dashed lines are guides to the eye.
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However, these clustering effects do not have a signific
impact on the phase diagram in this region since phase e
libria between the solid and the liquid are basically driven
the deep free-energy elbow of the solid, accurately rende
by our theory, and the ideal-gas chemical potential of a m
ture of clusters. The coexistence density of the liquid is
very sensitive to the latter provided this is large and negat
a feature that is contained in our mean-field theory, wh
represents the mixture as a simple uniform gas of partic

Once the solid-solid transition shows up, forq around 0.1,
the topology of the phase diagram remains the sameq
decreases down toq50 @Figs. 2~b!–2~d!#. As q decreases
the depletion potential becomes deeper and more nar
Thus the free-energy elbow becomes thinner and move
higher densities, and so does the solid-solid transition.
sufficiently smallq, the elbow gets extremely narrow an
located practically at the packing fractionh5hcp/(11q)3,
where hcp corresponds to close packing. This value det
mines the critical density of the solid-solid transition wh
the criticalhs is given by the minimum value necessary f
the elbow to develop. Ashs increases, the expanded coe
isting solid will ultimately meet the HS melting transition
giving rise to a fluid-solid-solid triple point.

It is interesting to note that the phase diagrams roug
scale withq. In other words, asq decreases, the coexisten
lines corresponding to the fluid and expanded solid tend
flatten off, a signature of sticky-sphere behavior. For smaq
and hs , the leading term of the depletion potential~hence
the perturbation free energy! is proportional tohs /q3. Then,
for finite q, and providedhs is sufficiently small, the deple
tion potential has no appreciable effects and the fluid-s
transition of the hard spheres is the only one appearing
finite range abovehs50. The topology of the phase diagra
is that shown in Fig. 2~d!, whereq50.0001. Note that the
caseq50.00001 has been included in the same figure so
the scaling behavior can be grasped. It is also worth no
that the scaling seems to move the interesting zone of
diagram out of the region where the clustering effects sho
be important. In the limitq50, the depth of the free-energ
elbow is infinite, regardless of the value ofhs ~except for the
obvious casehs50) and located athcp. The system under
goes a phase separation into an infinitely dilute fluid an
close-packed solid. The sticky-sphere model is recovere
f
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IV. CONCLUSION

In conclusion, we have used a first-order perturbat
theory to investigate the phase diagram of an asymme
binary mixture of hard spheres, taken as an effective o
component system whose spherical molecules interact v
depletion potential. Several approximations for the deplet
potential, derived by different authors, have been used.
theory can explain the topology of the phase diagram and
evolution with size ratio, and the results obtained are also
excellent agreement with computer-simulation studies of
effective system. In addition, comparison has been m
with the results of simulations performed on the real ha
sphere mixture; this provides some indirect assessmen
the validity of both the different depletion-potential approx
mations and our theoretical approach. It is to be noted
our first-order perturbation theory, and that of Gastet al.,
which includes higher-order terms, agree with these simu
tions even in the region where clustering is expected to
important. Other perturbation theories seem uncapable of
scribing systems of particles interacting through very sho
ranged potentials. Also interesting is the fact that the diff
ent potentials give practically the same phase diagram,
that the simple Asakura and Oosawa potential already c
tains all the features of the phase diagram: fluid-solid co
istence along with a solid-solid transition forq,0.1 and a
metastable fluid-fluid transition. Our results indicate tha
simple depletion potential, linear inhs , may render the rea
mixture in an accurate fashion provided the size ratio is
very high.
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